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A design for constructing control strategies using extremal aiming in the direction of the coinvariant gradients of auxiliary 
functionals of the Lyapunov-Krasovskii type is presented for problems of controlling hereditary dynamical systems when there 
is interference. It is proved, under fairly general conditions, that these strategies yield the optimal guaranteed result. © 2004 
Elsevier Ltd. All rights reserved. 

The method of extremal aiming in positional control problems, which dates back to publications by 
N. N. Krasovskii (see [1-5], for example), has been widely developed in the modern theory of control 
processes and the theory of differential games. Appropriate extremal aiming designs are used in different 
problems to prove the existence of optimal solutions and the efficient construction of the resolving control 
laws using the principle of negative feedback [4-7]. Extremal aiming is used in control procedures with 
a guide [3, 4] which stabilized the optimal motion and in dynamic methods to solve inverse problems 
in dynamics [8]. 

This paper continues the investigation presented in [6, 9-12] of control problems with hereditary 
information, developing the design of extremal aiming in the direction of quasigradients, proposed earlier 
in [13, 14] for problems of controlling ordinary differential systems. The problem is formalized within 
the framework of the game-theoretic approach [4, 5] in combination with a functional treatment of the 
control process, which is close to that indicated earlier in [9, 15]. Elements of invariant differential 
calculus [16], non-smooth analysis [17] and results [10, 12, 18] on the development of the theory of 
generalized (minimax, viscous) solutions of the Hamilton-Jacobi type equations [19, 20] for hereditary 
systems are used. A similar design was considered in special cases in [11, 12]. A considerable refinement 
and extension of the results in these papers is given below. 

1. BASIC ASSUMPTIONS 

Consider a dynamical system described by a differential equation of the form 

2[t] = f ( t ,x[ t . [ . ] t] ,u[ t] ,v[ t] ) ,  t . < t  0<t_<T 

x[t]~ R n, u[t]~ P c R ~ ,  v[t]~ Q c R  m 

with the initial condition 

(1.1) 

x[t ,[ ' ] t  o] = Xo[t,[.]to] ~ C([t,, to], R n) (1.2) 

Here t is the time variable, x[t] and kit] = dx[t]/dt are the value of the phase vector and the rate at 
which it is changing at the current instant of time t, x[t. [.It] = {x['c], t. < "~ < t} is the history of the motion 
which has been accumulated up to the instant of time t, u[t] is the current action of the control, ag[t] is 
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the action of the uncontrolled interference, P and Q are known compacta, t ,  and T(t,  < T) are known 
instants of time, to is the instant when the control process starts and Xo[t,[']to] is the initial history. 
Measurable samples of the control and the interference u[']: [to, 7] ~ P and ~[-]: [to, T) ~ Q are 
permitted. In the case of the initial condition (1.2), the function x['] • C([t,, 7], Rn), which is identical 
with Xo[t,[']to] in [t,, to], absolutely continuous in [to, 7] and satisfies Eq. (1.1) for almost all t • [to, 7] 
is the motion of system (1.1). Here, the history of the motionx[t,[']t] is the contraction of this function 
in [t,, t]. We shall call the triplet {x[-], u['], v[']} a sample of the control process being considered. 

Suppose the quality of the control process is estimated by the characteristic 

T 

= y({x[.],  u[.], 19[-]}) = tJ(x[.]) -Sh ( t ,  x[t,[.]t], u[t], 19[t])dt Y (1.3) 

to 

The purpose of the control is to make the value of this characteristic as small as possible One must 
take into account here that the actions of the interference are unpredictable and can be very 
unfavourable. 

In relations (1.1) and (1.2), we assume that the funct ionf  = f(t, x[t, [.It], u, v) • R" and the functional 
h = h(t, x[t,[']t], u, "o) • R are defined for all t • [t,, 7], x[t,[.]t] • C([t,, t], Rn), u • P and v • Q, 
continuous in the set of variables x[t,[.]t], u and v for any fixed value of t and for any fixed function 
x['] • C([t,, T], R~), continuous in the set of variables, t, u and v and, for any compactum D C 
C([t,, T], Rn), equipotentially with respect to x[-] • D. The limit 

Ilf(t, x[t,[. l t],  u, v)ll z + h2(t, x[t,[.]t], u, 19) < L2(t, x[t,[.]t]) 

is satisfied, where 

L(t ,x[t ,[ .] ,])  = ( 1 +  maxl]x['c]l]/c, c : const>0 
t ,  < X _ t  J 

(:.4) 

and, for any s • R n, the equality 

minmax[ (s, f ( t ,  x[t ,[ . l t] ,  u, 19)) -h ( t ,  x[t ,[. l t],  u, o)1 = 
u e  PI)~ Q 

= maxmin[ (s, f ( t ,  x[t.[.]t], u, v)) - h(t, x[t,[.]t], u, 19)] = H(t, x[t,[.]t], s) 
O~ Q u e  P 

(1.5) 

holds. 
The quanti ty/ t ,  which is defined by the equality, is called the Hamiltonian of system (1.1), (1.3). 

Henceforth, the symbol [[.[[ denotes the Euclidean norm of a vector and (., .) denotes the scalar product 
of vectors. 

As regards the furictional c~ = ~(x[-]), we assume that it is defined and continuous is C([t,, 7], Rn). 
We will denote the set of functions y[.] • C([t,, T], Rn), each of which is identical with x[t,[.]t] in 

It,, t] and is Lipschitzian in [t, T], by the symbol Lip(t, x[t,[.]t]). The set of functions which, for almost 
all xM(t,  x[t, [']t]), satisfy the differential equality 

IIPIxlll < L(x, y I t , [ . lx ] )  + cM 

is denoted by the symbol "c • [t, 7]. 
By virtue of the estimate (1.4), the inclusion 

x['] • xM(to, Xo[t,[']to]), M >O  (1.6) 

will hold for any possible sample {x['], u[-], v[.]} of the control process (1.1)-(1.3). 

2. C O N T R O L  S T R A T E G I E S  AND T H E  F U N C T I O N A L  OF T H E  
O P T I M A L  G U A R A N T E E D  R E S U L T  

We identify a control strategy with an arbitrary function 

U = U(t ,x[t ,[ .] t])  • P 
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The control process based on a strategy U is accomplished in a scheme which is discrete with respect 
to time. The subdivision of the time interval [to, 7] 

A = { t i : t  I =to ,  t i + l > t i ,  i =  1 . . . . .  N,  tN+ 1 = T }  

is chosen and the following control is formed successively over the steps of this subdivision in the negative 
feedback circuit 

u[t] = U(ti, x[ t , [ . l t i ]  ), t i< t<t i+  1, i =  1 . . . . .  N (2.1) 

The set of all possible samples of the control process, corresponding to a selected strategy U and a 
subdivision A, is denoted by the symbol S(to, xo[t,[']to], U, A). Actually, this set consists of triplets 
{x[.], u[.], v[']} such that v[.]: [to, 7) ~ Q is a measurable function, u['] is a piecewise constant function 
of the form (2.1), and x[']: [t,, 7] ~ R n is a continuous function, satisfying condition (1.2), which is 
absolutely continuous in [to, 7] and, together with u[-], v[.], satisfies Eq. (1.1) almost everywhere. Under 
the assumptions which have been made, the set S(to, Xo[t,[']to], U, A) is non-empty. 

Following the principle of a guaranteed result, we define the quantity 

F(t  o, Xo[t,[.]to], U, A) = supT(S(t o, Xo[t,[.lto], U, A)) (2.2) 

where here and henceforth, we use the notation sup 9(A) = sup p(a) when a ~ A. 
The optimal guaranteed result O G R  of the control will be 

tP(to, Xo[t,[.lto] ) = infF(to,  Xo[t,[.lto], U, A) 
U,A 

(2.3) 

According to equality (2.3), the strategy U ° is optimal if, for any number ~ > 0, a subdivision A is 
found such that 

F(to, Xo[t,[.]to], U °, A) < tp(t o, Xo[t,[.]to] ) + (2.4) 

We shall also consider the so-called s-strategies 

U~ = U~(t ,x[ t , [ . ] t l )  e P 

where e > 0 is an accuracy parameter (see [5, p. 68]) which is chosen prior to the start of the control 
process. The optimal strategy will be the e-strategy U~ for which an ~ > 0 and A are found for any 
e > 0 such that the inequality (2.4) is satisfied (where instead of U °, we write U~). 

The value of the O G R  depends on the initial position {to, Xo[t,[']to]}, Consequently, the following 
O G R  functional can be defined 

{t ~ [t , ,  T], x[t ,[ .] t]  e C([t , ,  t],R~)} ~ tp = tp(t ,x[t ,[ .] t])  e R (2.5) 

When t = T, this functional satisfies the condition 

g~(T,x[t,[.]T]) = •(x[.]), x[ t , [ . lT]  = x[-] ~ C([t , ,  TI, R") (2.6) 

Its lower closure 

f 1 
~(t, x[ t , [ . ] t ] )  = liminf{9(t, y[t ,[ . l t ] )[  max IIx[x] -Y[Xl[[ -< 8} 

850  [ t, <~<_t 3 
(2.7) 

possesses the property called u-stability in the theory of differential games [4-6]. In the case being 
considered, this property can be expressed as follows [12, 18]. 

PropertyA. For any "c, ~ [t,, T),y ,[ t ,[ .]z ,]  ~ C([t,, "c,], R n) and M >_ O, s ~ R n, a function (y[-], z[.]) c 
C([t,,  7], R ~ x R)  exists which is absolutely continuous in [~,, T] and such that 

Y['I ~ X M ( % , Y , [ t , [ ' ] X , ] ) ,  z[x, l  = ~ ( x , , y , [ t , [ ' l x , ] )  (2.8) 
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~[t] = (29[t], s) - H(t, y[t ,[ .]t] ,  s) for almost every t s [x,, T] 

z[t] = ~p(t,y[t,[.]t]),  t ~  [x , ,T]  

(2.9) 

(2.10) 

3. A U X I L I A R Y  D E F I N I T I O N S  

We will introduce the following definitions for functionals of the form 

{t~ [t, ,  T], w[t , [ . l t ]  ~ C([t , ,  t], Rn)} ~ p = p(t, w[t ,[ ' ] t ] )  ~ R (3.1) 

Definition 1. We will say that the functional (3.1) is [t', t,)-continuous ([t', t"]-continuous respectively), 
where [t', t"] C [t., T], if, first, it is continuous in w[t.[.]t] ~ C([t., t], R n) for any fixed t e [t', t") 
(t ~ [t', t"]) and, second, it is continuous in t in [t', t") (in [t', t"] respectively) along any fixed function 
w[.] e C([t., 7"], R n) equipotentially with respect to w['] e D for any compactum D C C([t., T], Rn). 
The functional 9 is continuous if it is [t., 7]-continuous. 

Definition 2. We will say that the functional (3.1) is piecewise-continuous if a finite number, q, of points 
of discontinuity tj ~ [t,, T] (t 1 = t, ,  tq = T) exists such that it is [tj, tj+ 1)-continuous for any 
j = l , . . . , q - 1 .  

Definition 3. Functional (3.1) is coinvariantly (ci)-differentiable if, for any t ~ ([t,, 7] and w[t,[.]t] 
C([t,, t], Rn), ~t9 = ~t9( t, w[t,[']t] ~ R and Vp = Vp(t, w[t,[']t] ~ R n exist such that the equality 

p(t + 8, y[ t , [ . ] t  + 8]) - p(t, w[t ,[ .] t])  = 

= 3 ,pS+(Vp,  y [ t+8] -w[ t ]}+oy[ . ] (~ ) ,  O < 8 < T - t  
(3.2) 

holds for all y['] ~ Lip(t, w[t,[.]t]), where Oy[.](fi) depends on the choice of y['], Oy[.](8)/~ ~ 0 when 
8--->0+. 

The quantities Ot9 and Vp = {Vlp, ... , Vnp} are called the ci-derivative with respect to t and the 
ci-gradient of the functional p respectively. We shall speak of the function p being [t', t"]-ci-smooth 
([t', t"] C_ [t,, T]), if it is [t', t"]-continuous, ci-differentiable and its ci-derivative ~tP and the components 
Vk p, k = 1 , . . . ,  n of its ci-gradient Vp are [t', t")-continuous functionals. We shall say that the functional 
p is ci-smooth if it is [t,, T]-ci-smooth. Details of the technique of the invariant differential calculus of 
functionals have been described, for example, in [16]. 

4. THE CASE OF T H E  C I - S M O O T H  F U N C T I O N A L  FOR 
THE O P T I M A L  G U A R A N T E E D  R E S U L T  ( O G R )  

If the OGR functional q~ is ci-smooth then, by virtue of system (1.1), the formula 

d~p( t , x [ t , [ . l t ] )  = b ,~p+(V(p , f ( t , x [ t , [ . ] t ] ,u[ t ] , v [ t ] ) )  for almost every t a  [t0, T] (4.1) 

holds for its complete derivative (along the motions of this system). 
According to what has been described earlier in [18], in the case of a ci-smooth functional % the 

condition for u-stability (propertyA) is transformed into the differential inequality 

3t~ p + H( t ,x[ t . [ . ] t ] ,  V~p) <0, t ~ [t . ,  T),  x[t .[ .] t]  ~ C([t . ,  t], R") (4.2) 

Here, 3t(P = Ot(P(t, x[t,[.]t]) and Vq0 = V~p(t, x[t,[.]t]) are the ci-derivative with respect to t and the 
ci-gradient of the functional % 

Hence, repeating the arguments (see [5, p. 132], for example) used in making smooth estimates of 
the guaranteed result, taking account of relations (4.1) and (4.2) for the problem being considered, we 
obtain [12] that, in cases when the functional q0 of the OGR turns out to be ci-smooth, the optimal strategy 
U ° can be constructed by aiming in the direction of its ci-gradient Vq0: 

U°(t, x[ t , [ .] t])  = p(t, x[t ,[ .] t] ,  s°), s ° = rip(t, x[ t , [ . ] t] )  (4.3) 
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where  

p( t ,  x [ t . [ . ] t ] ,  s) ~ argmin{max[  (s,  f ( t ,  x [ t . [ . l t ] ,  u, o))  - h(t,  x [ t . [ . ] t ] ,  u, o)]}  (4.4) 
u ~ P  v E Q  

Example 1. Suppose the dynamics of a system is described by the equation 

t 

2It] = a( t ) x [ t ]+ fK( t ,~ ) x [~]d~+u[ t ] - l ) [ t ] ,  t ,  = 0-<t 0<t-_.T 
0 (4.5) 

x[t] e R n, u[t], V[t] ~ R n : llu[t]ll -< 1, Itv[t]ll-< 1 

and that the quality factor of the control process has the form 

T 

T = Ux[T]II 2 -  S(II o[0112 -I[u(t)ll2) dt (4.6) 

t o 

Here, A(t)  and K(t, ~) are continuous n x n-matrix functions. According to inequality (1.5), the Hamiltonian of 
system (4.5), (4.6) is defined by the equality 

H(t, x[0[.lt], s) = A(t)x[t] + IK(t ,  ~)x[~]d~, (4.7) 
0 

We denote an n x n matrix function by W(x, t), such that ~(z,  t) = 0 when x < t and V(t, t) is the identity matrix 
of the identity transformation, and 

T 

d~P('c, t)/dt = - tP('c, t )a(  t) -I~P('¢, ~)K(~, t)d~ 
t 

We put 

Then, the equality 

when x > t (4.8) 

tT  

to(t, x [O[ . l t ] )  = ~P(T, t)x[t] + IItP(T, ~)K(~, r l )x[r l ld~dr l  
Ot 

T 

x[T] = to(t, x[0[.]t]) + fW(T, 1])(u[rl] - O[rl])drl 
I 

(4.9) 

(4.10) 

(4.11) 

By virtue of relations (4.8) and (4.9), the functional (4.11) is ci-smooth and, at the same time, 

ate p = - A(t)x[t] + fK( t ,  ~)x[~ld~, gr , Vq~ = 2wT(T, t)toft, x[O[.lt]) 
0 

(4.12) 

(the superscript T denotes transposition). It is seen from relations (4.7) and (4.12) that the functional (4.11) satisfies 
inequality (4.2). Hence, in the case being considered, it is possible to  construct strategy (4.3): 

= f -Vtp /2 ,  if JIVco[I -< 2 
U°(t, x[0[-]t]) ~-Vcp/llVtpl[ otherwise 

For any initial position {to ~ [0, T],x0[0[']t0] e C([0, to], Rn)} and any number ~ > 0, the control of system (4.5) 
using the above-mentioned strategy U ° enables one to ensure a value 

¢p(t, x[0[.lt]) = Ilto(t, x[0[']t])ll 2 

holds for any possible form Ix['], u[.], ~[.]} of the process for controlling system (4.5). 
Since it is always possible to encounter a situation when v[.] = u[.], we deduce from relations (4.6) and (4.10) 

that it is impossible here to guarantee anything better than 
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~, _< Ilco(t0, x0t0t.lt0])ll 2 + 

for the factor (4.6) whatever the permissible form of the interference a)[-]. On the other hand, there is no strategy 
U which would enable one to guarantee a better result in this case. 

5. T H E  G E N E R A L  CASE 

In the general case, the function q0 of the O G R  does not possess suitable smoothness properties. Its 
ci-derivatives do not exist at all points {t, x[t,[.]t]} and formula (4.3) cannot be used to construct the 
optimal control strategy. However, following the method proposed in [13, 14] for problems of controlling 
ordinary differential systems, it is possible to construct an optimal e-strategy in a fairly general case by 
replacing the ci-gradient Vq0 in (4.3) (which exist) by a suitable gradient of a necessarily ci-smooth 
auxiliary functional of the Lyapunov-Krasovskii type. 

Thus, suppose Do is a compactum from C([t., to], R n) such that 

Xo[t .[ . l t  o] ~ D O (5.1) 

Fixing M > 0, we put 

X 0 = {y[.] ~ xM(to, x[ t . [ . l to l ) lx[ t . [ . l to]  ~ D O } (5.2) 

We now consider the auxiliary functional 

{ t~  [t . ,  T], w[t,[ .] t]  ~ C([ t . , t ] ,Rn)}  ~-~ ve = ve( t ,w[ t . [ . ] t ] )  ~ R, e>O 

We require that the following conditions should be satisfied: 
(a) the functional ve is non-negative, continuous and ci-differentiable, and the ci-derivative 3tv~ and 
the components of the ci-gradient Vv~ of this functional are piecewise-continuous (see definitions 1-3); 
(b) the limit ve(t, w[t,[']t] - 0) _< e holds; 
(c) for any number L > 0 and g > 0, and e > 0 exists such that, for any x['], y['] s Xo, the inequality 
v~(T, w[t.[-]T]) < L where w[.] = x[.] -y[-] implies the inequality I~(x[']) - ~(y[']) [ < g; 
(d) the inequality 

O,V t + H(t, x[ t . [ . l t ] ,  Vve) - H(t, y[t .[ .] t] ,  Vve) < 0 

holds for any t e [t,, T] and x[.], y[.] a Xo, where 

3tVe = O,vt( t ,w[t , [ . l t ] ) ,  Vve = Vve( t ,w[ t , [ . l t ] ) ,  w['l  = x [ - l - y [ . ]  

(5.3) 

The requirement that a functional ve with properties (a)-(d) should exist imposes an additional constraint on 
the dynamical system being considered. Nevertheless, the class of systems which satisfy this requirement is quite 
extensive. 

For example [11, 12], suppose the Hamiltonian of system (1.1), (1.3), which is defined by equality (1.5), satisfies 
the Lipschitz condition: a ~. > 1 exist such that, for any t ~ [t,, 7], s ~ R n andx[.], y[-] ~ X0, the inequality 

t ~1/2 

,H(t, x[t.[.]l], s ) -H(t ,y[ t .[ .] t] ,  s), <~.(I+H$1')|[ ,lw['c]l]2d't+ Itw[/]H2| 
) 

(5.4) 

holds, where, as before, w[-] = x['] -y[']. It is then always possible to take 

ve = ~(t)13e, 0 < e < exp {-2~.(T- t . )  } 

where 

cxe(t) = (exp{-2~.(t- t . ) } -  e)/I;, I]e= e4 + 2~. Sltw[xlll 2dx + IIw[tlll 2 
l ,  

The functional vE is ci-smooth so that it satisfies condition a. Its ci-derivatives are defined by the equalities 

(5.5) 
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~tVE = - 2 ~ , e x p { - 2 ~ , ( t -  t , ) I ~ E / E  + ~.~(t)llw[t]lla/f~, Vv~ = O~e(t)w[t]/~e (5.6) 

It follows from relations (5.4) and (5.6) that the functional (5.5) satisfies condition d. It can be directly verified 
that it also satisfies condition b and c. 

As a second example of the choice of the auxiliary functional re, consider the case when t,  = -~,  O = const > 0, 
to -> 0 and 

f ( t ,  x [ t , [ ' l t l ,  u, v) = A(t)x[t]  + Ao(t )x[ t  - t~] + f ( t ,  u, 1)), h(t, x[ t .[ .] t] ,  u, v) = h(t, u, I)) 

In this case, it is possible to take 

v e = (2e) -1 w[xlll2dx+ o)(x]t,w[t.[.]t])l[2dx 
k,t ,  t 

where 
t + 0  

co(xlt, w[t . [ . ] t ] )  = *('c,  t )w[t]  + I * ( x ,  ~ ) A t ~ ( ~ ) w [ { -  O ld  ~ 
t 

(5.7) 

Here, q5(.c, t) is an n x n matrix function such that ~b(~, t) = 0 when x < t, q>(t, t) is the identity matrix and 

d~('c, t)/dt = - ~(~, t ) A ( t ) -  ~(x,  t + O)Ao(t + d) when x > t 

The functional (5.7) is ci-smooth and 

~tvE = - (A( t )w[ t ]  + A o ( t ) w [ t -  O], Vve) 

T 

VVt  = E-II~T('C, t)O)('Clt, w[t,[.]tl)dx 
t 

Hence, taking into account the fact that, in the case considered, the Hamiltonian H has the form 

H(t, x[t,  [-It], s) = (A(t)x[t]  + A o ( t ) x [ t -  t~], s) + min max [ (s, f ( t ,  u, v)) - h(t, u, v)] 
u ~  P v ~  Q 

we obtain the conditions a and b are satisfied in the case of this functional. Since, according to expression (5.7), 

T 

vE(t, w[t.[.]t]---O) = 0, ve(T, w[t,[.]T]) = (2e)-lfHw[xlllZdx 
t ,  

conditions b and c will also be satisfied. 
Note that, in specific problems, a suitable choice of the auxiliary functional v~ enables one to simplify considerably 

the construction of the extremal e-strategy considered below. 

On the basis of  the auxiliary functional v~, we now consider the following t ransformat ions  of  the lower 
closure (2.7) of  the funct ional  (2.5) for  the O G R  

where  

(pe = cOs(t, x[ t . [ . ] t ] )  = min [~p(t, y[ t . [ . ] t ] )  + v~(t, w[t .[ . ] t] )]  (5.8) 
y[.] ~ X 0 

w[t ,[ . ] t]  = {w['c] = x [ z l - y [ I ] ,  t .  < I:< t} 

The  set X0 is compac t  in C([ t . ,  7], R n) and the functional  Cp = Cp(t, y[t,[.]t]) is semicont inuous  f rom 
below with respect  to y[t.[.]t] ~ C([t . ,  t], R n) for  any fixed t ~ ([t . ,  7] so that  a m i n i m u m  in (5.8) is 
actually reached.  Suppose  yC[.] ~ X0 is the minimizing funct ion in (5.8). It  depends  on the posi t ion 
{t, x[t,[.]t]} and the p a r a m e t e r  e > 0. We put  

= e < we[t.[ .]t]  {we['C] = x [ X ] - y  [ ' C ] , t . _ X < t }  
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We determine the extremal e-strategy U~ by aiming in the direction of the ci-gradient Vv~(t, we[t,[']t]): 

c e U~(t, x[t,[.]t]) = p(t,  x[t,[.]t], s ), s e = Vv~(t, we[t,[']t]) (5.9) 

Here, the function p(t, x[t,  [']t], s) satisfies inclusion (4.4). 

Theorem 1. For any number ~ > 0, a number e > 0 and a subdivision A of the time interval [to, 7] exist 
such that the inequality 

F(t0, Xo[t,[.]to], U~, A) < ~(t0, Xo[t,[.]to]) + ~ (5.10) 

will be satisfied for any initial position {to, Xo[t,[']to]} which satisfies condition (5.1). 

Proof. By virtue of condition b, according to equalities (5.8) we have 

¢pE(t, x[t,[.]t]) < (p(t, x[t ,[.]t]) + e (5.11) 

for all t s [t,, 7] and x['] ~ Xo. 
We will put 

g = maxlG(X0) I < 

Then, taking relations (2.6) and (2.7) into account, it follows from (5.11), when t = T, that 

tpe(T, x[t ,[ .]T])  < K + e 

On the other hand 

%(T,  x[t ,[ .]T])  = G(ye[']) + re(T, we[t,[ ']T]) >- - K  + re(T, we[t,[']T]) 

Consequently, the inequality 

re(T, we[t,[.]T]) < 2K+ e 

holds, by virtue of which, taking into account the non-negativeness of the functional ve and condition 
c, we derive the estimate 

tpE(T, x[ t , [ . ]Tl )  >- ~(ye[.]) > t~(x[.]) - I.t(e), x[.] ~ X 0 (5.12) 

where g(e) ,1, 0 when e ,1, 0. 
It is now sufficient to show that 

{x[-], u['l, 1)[.]} e S(t  o, Xo[t,['lto], U~, A) 

will satisfy the inequalities 

t i+l  

q)e(ti+ 1, x[t*[']ti+ 1]) - I h(t, x[t,[.]t], u[t], l)[t])dt <_ 
t i 

<%(ti ,  x [ t , [ . ] t i ] )+r l (~) ( t i+ l - t i ) ,  i =  1 . . . . .  N; 5 =  

(5.13) 

m a x  ( t i +  1 -ti) 
i = 1  . . . . .  N 

(5.14) 

for any of the possible samples. 
Here A is the subdivision of the time interval [to, T] in which all the points tj of possible discontinuities 

of the ci-derivative ~tv~ and the components of the ci-gradient Vv~ of the auxiliary functional va are 
included, t i are the points of this subdivision, 5 is its diameter and 11(8) $ 0 when 8.1. 0. 

By virtue of inequalities (5.14), we actually have 

T 

%(T, x[t,[.lTl) - Ih(t, x[t,[.]t], u[t], u[t])dt <- %(t o, Xo[t,[.]tol) + rl(8)(T - t o) 
l O 
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whence, taking into account equality (1.3), inclusion (1.6) together with the notation (5.2), inequality 
(5.11) and estimate (5.12), we derive the inequality 

tp(t o, Xo[t,[.]to]) + £ + la(e) + "q(8)(T- t0) > y({x[.], u[.], v[.]}) 

It will be satisfied for all the samples (5.13) Hence, by choosing e > 0 and A from the condition 

+ la(e) + rl(8)(T- to) _< 

we obtain the required inequality (5.10) from this in accordance with definition (2.2). 
We will now prove inequalities (5.14). Fixing the samples (5.13) and i = 1, . . . ,  N, we put 

g~[t] = { t ,x[ t , [ . ] t ]} ,  % = t i, x* = ti+ 1 

It is required to show that 

, [*  

cp~(gX[x*]) = Ih(gX[t], u[t], o[t])dt < q)~(gX[x,]) + rl05)(x* - % )  

where q(8) $ 0 when 8 $ 0 and q(8) does not depend on the chosen sample (5.13). By the construction 
(5.8) and (5.9), for t = ~,, we put 

y , [ ' ]  = ye[.l, g~, = { X , , y , [ t , [ . ] X , ] } ,  g~, = {X,,we[t ,[ .] 'C,]} 

e Vve  w e ~(gX x s = s = (g , ) ,  u ,  = U ['C,]) = p(g ['C,],s) 

We have 

w ~0e(gX[x,]) = ~p(gY) + v t ( g , )  (5.15) 

u[t] e = u , ,  x[t] = f(gX[t],u[t],  V[t]) for almost every t~  [x, , 'c*) (5.16) 

At the same time, according to equality (1.5) and inclusion (4.4), the relations 

H(gX[x,], s) x e x e = m a x [ ( s , f ( g  [x,],  u , ,  I))) - h ( g  [ 'c ,] ,  u , ,  v ) ]  > 
o,  O (5.17) 

> ( s ,  x " v [ t ] ) )  x " o [ t ] )  f ( g  [X,], u , ,  - - h ( g  [ x , ] ,  u , ,  

hold. 
On the basis of the property of u-stability (propertyA), we take the function (y[.], z[']) which satisfies 

conditions (2.8)-(2.10) and then use the notation 

gY[t] = { t , y [ t , [ . ] t ] } ,  w[.] = x [ . ] - y [ - ] ,  gW[t] = { t ,w[ t , [ . ] t ] }  

Note that gY['l:,] = gY, gW[1:,] = gW here. From relations (2.8), (2.10) and (5.15), taking into account 
the notation adopted, we derive 

"t* 

~e(gX[z,]) = ~p(gY['c*]) - f £[t]dt + Ve(g,) (5.18) 

Sincey['] E X M (gY = {x , , y , [ t , [ ' ] z , ] } )  andy,[ ' ]  e X0, theny['] ~ X0 the inequality 

(p(gY[x*]) + ve(gW[x*]) _> tpe(gX['C*]) 

will therefore be satisfied in accordance with equality (5.8). 
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From this and from relation (5.18), we conclude that 

-¢* 

< X ~%(gX['c*]) - ~ h(gX[t], u[t], 1)[t])dt _ (pe(g [x , ] )  + 0 
"[, 

0 = ve(gW['c*])- ve(g~, ) + f [ e [ t ] -  h(gX[t], u[t], l)[t])]dt 

where 

We will now estimate 0. Consider the function 

v[t] = v~(gW[t]) = rE(t, w[t.[.]t]), t ~ [~,, X*] 

(5.19) 

(5.20) 

hold. 

1 9t t ldt  = I [O'vt(gW[t]) + (Vve(gW[tl)' .~[tl -•[t l) ldt  
"~, "~, 

Taking this and relations (2.9) and (5.16) into account, the quantity (5.20) can be represented in the 
following form 

"C* 

0 = f [OtVe(gW[t]) + (Vve(gW[t]), f(gX[t], u , ,  v[t])) - h(gX[t], u , ,  v[t]) - 
T,, 

- H(gY[ t], s) - ())[t], VvE(gW[ t]) - s) ]dt 

Hence if we take into account the equality 

w 
s = W e ( g . )  = Vve(g ['1;.]) 

and the continuity properties of the quantities f, h, Otv~, Vv~, we obtain the estimate 

0 < ~ [b,vE(gW[x.]) + (s, f (gX[x. l ,  u . ,  U[t])) -h(gX[x.] ,  u . ,  v[t]) - H(gY[x.I,  s)]dt + 
~, (5.21) 

+r1(8)(1:* -1: . ) ,  rl(~) ,1, 0 when 8,1, 0 

Since, by virtue of relations (1.6) and (5.2), the functions x['] and y[.] are always contained in the 
compactum X0, the same infinitesimal q(8) can be taken here for all possible samples (5.13). Taking 
into account the fact that s = Vve(gw[~.]) and using inequality (5.3), we obtain the estimate 

0_< r l (~) (x*-  x . )  

from inequalities (5.17) and (5.21). 
This estimate completes the proof of relation (5.14) and, together with it, also the whole theorem. 
According to definition (2.3) of the magnitude of the OGR, it follows from this theorem that 

tP(to, Xo[t.[']to]) < ~P(to, Xo[t.[']to]) 

On the other hand, since the functional C o is the lower closure (2.7) of the functional 9, we have 

tp(t O,xO[t,[.]tO]) > ~p(t O,xo[t,[.]tO] ), t O ~ [ t . ,T ] ,  Xo[t.[.]t 0] ~ C([ t , , t0 ] ,R  n) 

w , w 
ve(g [I: ] ) - r e ( g . ) =  

By virtue of condition a, the functional ve is [%, 1:*]-ci-smooth. Since x[.], y[.] ~ X0, then w[.] 
Lip(gW[to]). Hence, the function v[t] is absolutely continuous and, on taking account of relation (3.2) 
(when p = v~), the equalities 
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Hence ,  in the case of  the assumptions being considered,  (p = c.p, and, consequently,  the extremal 
e-strategy U~ is the optimal  strategy. 

Remark 1. The  counte r -prob lem of  searching for the in terference strategy V ° (or V~) which guarantees  
that  the factor (1.3) has the greatest  possible value can be t rea ted  in a similar manner .  

Example 2. Suppose the dynamics of the control system, which has two-dimensional phase vector x = {xa, X2} • 
R 2, is described by the equations 

t 

21[t] = Sln(l +t+X)Xz[X]d'c+u[t], .~2[t] = o[t] 
o (5.22) 

O<t°<t<T,  lu[t]l<a, It~[t][<b 

with the initial condition 

0 0 x[x] = {xl[x],x2[x]} = {xl[x],x2[x]} = x°[x], 0 ~ x ~ t  o (5.23) 

The quality factor of the control process is given in the form 

T 

2t = Ix,[T] +x2[/*] [ - f ~ d t  (5.24) 
t o 

The constants a > 0 and b > 0, the initial instants of time t o • [0, 7) and the initial history x°[0[.]t °] • 
C([0, to], R2), the intermediate instant of time t* • [0, T) and the terminal instant T > 0 are assumed to be known. 

The Hamiltonian of system (5.22), (5.24) has the form 

t 

H(t,x[O[.lt],s) = s,Sln( 1 + t + x)x2[xldx_a~l + s12 + bls21 (5.25) 
0 

We now use the notation 

r r~ 
O(t,x) = f l n ( l + ~ + ~ ) d ~ ,  Ol(t ) = f f ln ( l+~+ 'c )dxd~  

t t t  

lo~l(t)+l when t<t*, r 
¢02(t) = [ O ~ ( t )  w h e n  t> t* ,  ~ 3 ( t )  = bf°E(~)d'¢ 

t 

t ~x2[t] when t< t*  
p(t, x[0[.]t]) = xl[t] + O~l(t)x2[t ] + fO(t, x)x2[x]d'¢ + 

0 [x2[t*] when t>t* 

Note that the functional 9 = p(t, x[0[']t]) is continuous and ci-differentiable. We will calculate its ci-derivatives. 
We have 

t 

~tP -- - f l n ( i  + t + x)x2[x]dx, Vp = {V lp, V2p } = { 1, o2(0} (5.26) 
0 

It can be seen that the quantities OtP and VIO are continuous and that the quantity V2p is piecewise-continuous 
with a point of discontinuity t*. We also note that 

p(t,x[O[.]t]--O) = 0, p(T,x[0[.]T]) = xl[T ]+x2[t* ] 

Whatever the permissible forms u[.]: [t p, T) ~ [-a, a] of the control and ~[-]: [t p, 7) ~ [-b, b] of the interference, 
the equality 

T 

x I [ T ]  + Xz[ t* ]  = p ( t  0, X 0 [ 0 [ ' ] t 0 ] )  + f(t02(1;)l)[17] + u[~])dx 
.o 
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holds for the corresponding formx[ ' ]  = {Xl['], x2[']}: [0, T] ~ R 2 of motion of system (5.22) in the case of initial 
condition (5.23). 

Starting from this equality, for example, by the method from [9] we obtain the following expression for the O G R  
functional of the control problem (5.22), (5.24) 

9(t, x[0[. l t])  = max[p(t, x[O[ . l t l ) l  + %(t)l/I - ( T -  t)adlt + 12l = 
Itl-< l 

= max[p(t, x[O[.]t])l  + gg(t,/)] 
Ill-< l 

Here, ~(t ,  l) is the envelope of the function which is convex from above 

in the set {l e R : 111 _< 1}, that is, 

where 

V(t, 1) = %(t)[l[ - ( T -  t )a , f l  + 12 

= l ¥ ( t , l , ) ,  if Ill-<l, 
C¢(t,l) [ ¥ ( t , / ) ,  if I l l > l .  

(5.27) 

t - tOa(t)) if 2tO](t) < (T - t)2a 2 l ,  = t°3( t ) ( (T-  t)2a2 2 -1/2 
9 

t I otherwise 

In order to construct the corresponding optimal control strategy, we make use of the extremal aiming design 
(5.8), (5.9) and put 

O 0 = {x[*] = x°['~] + f ,  0 < '~ < t01lJfl[ -< M0} 

where M0 > 0 is a sufficiently large number. At the same time, we put M > M0 in equality (5.2). We take 

vE(t, w[0I-]t]) = (2e)-Ip2(t, w[0[-]t]) 

as the auxiliary functional. 
By virtue of the properties of the functional p noted above, the functional vE satisfies requirements a-c .  When 

account is taken of equalities (5.26), its ci-derivatives are defined by the equalities 

t 

OtVe = OtVe(t, WI0[']t]) = -e- lp( t ,  w[0[-] t])I ln(1 + t + "Qw2[1;]d'~ 
0 

Vv~ = Vve(t ,  w[0[.] t])  = e-lp(t,  w[0[.]t]){ 1, ~2(t)} 

It is seen from this and from expression (5.25) that condition d is satisfied in the case of this functional. On 
carrying out the calculations, we obtain 

s e = Wry(t, we[0[.]t]) = {1 u, to2(t)lu} 

I u ~ argmax[p(t,  x[O[.]t])l  + Vg(t, l) - ~/2/2] 
Ill <- I 

2 Ve~(t, x t O [ . ] t ] )  = -alul ~l + l. (5.28) 

Consequently, 

According to Theorem 1, the e-strategy U~ which has been constructed is optimal for control problem 
(5.22)-(5.24). 

The result of the modelling of the control process of  system (5.22) on the basis of the e-strategy (5.28) in a pair 
with an interference strategy V = bcos(2Otxx[t]x2[t]) taken at random for the case of the following initial data 

T 3, t* 2, t o = = = 0 . 5 ,  a = 5, b =  2 

x°[x] = cos20X+0.5sinl0x,  x2°[X] = s in20x+0.5cos l0x when 0_<x<0.5 

is shown in Fig. 1. 
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The value of  the accuracy parameter  was chosen as e = 0.001. The action of the strategies was accomplished by 
uniform subdivision of  the t ime interval [0.5, 3] with a step size 8= 0.001. The a priori calculated magnitude of  
the O G R  was 

= -2.7843 

The value of  the quality factor realized was 

y = 10.220 + (-0.220)1 - 11.251 = -11.251 < cp 

The result of the modelling of the control process using the same 8-strategy U~ under the same conditions but 
in a pair with a counter-optimal interference e-strategy, which, in the case being considered, can be defined as 
follows. 

V°(t,x[O[.lt]) = sign(o~2(t)lu)b 

l v ~ argmax[p(t, x [ O [ . l t ] ) l  + ~ ( t ,  I) + 812/2] 
Itl-< 1 

is shown in Fig. 2. 
The value of  the quality factor obtained was 

T = 1(-2.647) + (-3.402)1 - 8.839 = -2.790 = ~p 
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In conclusion, we note that transformation (5.8) is similar to the "smoothing" transformations, by 
means of which quasigradients [13] and also proximal gradients (see [17], for example) of non-smooth 
functions are determined. Inequalities of the form of (5.3) play an important role in the theory of the 
generalized solutions of equations of the Hamilton-Jacobi type when proving the uniqueness of the 
solution (see [18-20], for example). In the case being considered of systems with an aftereffect, the 
functional v~ is a suitable analogue of the auxiliary functions which are used in these constructions. 
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